sábado, 22 de agosto de 2009

Curvas Modulares


En 1955, Yutaka Taniyama conjeturó que toda curva elíptica definida sobre el cuerpo de los números racionales es modular. En 1995, Andrew Wiles demostró el teorema de Fermat probando la modularidad de ciertas curvas elípticas: las semiestables. En 2001, la conjetura de Taniyama ha sido finalmente demostrada.
Uno de los problemas abiertos que centran actualmente los esfuerzos de los investigadores en Teoría de Números y Geometría Aritmética es la conjetura de Birch y Swinnerton-Dyer, la cual asegura que muchos invariantes aritméticos de una curva elíptica se pueden “leer” en el comportamiento de cierta función analítica asociada a la curva en cuestión.

En las técnicas propuestas hasta ahora para abordar la demostración de esta conjetura, la modularidad de las curvas elípticas ha jugado siempre un papel esencial. Se trata, por cierto, de uno de los siete problemas por cuya solución el Instituto Clay ofrece un millón de dólares.

Birch Swinnerton Dyer

Los matemáticos siempre han estado fascinados por el problema de describir todas las soluciones de x,y,z en ecuaciones algebraicas, como Euclides da una solución completa a esta ecuación, pero para ecuaciones más complicadas se convierte en algo extremadamente difícil.
Realmente, en 1970 Yu. V. Matiyasevich demostró que el décimo problema de Hilbert no tiene solución, por ejemplo, no existe un método general para determinar cuando estas ecuaciones tienen una solución en números enteros.
Pero en casos especiales se puede suponer que sí. Cuando las soluciones son de puntos de una variedad abeliana, la conjetura Birch y Swinnerton-Dyer dice que el tamaño del grupo de puntos racionales es relacionado con el comportamiento de la función asociada zeta z(s) cerca del punto s=1.
En particular esta increíble conjetura dice que si z(1) es igual a 0, entonces hay un numero infinito de puntos racionales (soluciones), y en oposición, si z(1) no es igual a 0, entonces hay solo un numero finito de dichos puntos.